无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
奥数班主要学的篇一
一、指导思想:
当学生接受一定的课本数学知识后已不满足课内的学习,希望通过丰富的课外活动来扩大自己的视野、拓宽知识、发展特长。作为一名数学教师应积极组织各种数学课外活动为学生创造一个自由、宽松、生动活泼的学习环境,它比课堂教学更具开放性,更有利于因材施教。开展丰富的数学笔记活动,激发学生的兴趣为着眼点,使学生喜欢活动,乐意参与。无论是活动的目标设计、题目拟定、内容安排、形式选择、效果评价都应体现趣味性。趣味性是针对活动课的内容和方法而言,以吸引学生参与,使学生在活动过程中寓学于乐、寓智于趣,生动活泼主动地获取知识。让学生一个良好的学习环境中培养了学生健康的学习情感,创设了一个敢于竞争、善于竞争的学习氛围,培养了学生忠诚、坚定、自信的意志品格。
二、活动目标:
通过开设数学奥数社团活动的形式,激发学生稳定而有效的数学学习兴趣,产生积极的内部动机,培养思维创新能力。更重要的是有利于培养学生数学学习的良好习惯,全面提升学生的数学素养。
三、活动要点:
认真组建数学奥数社团,带领学生走进丰富的数学世界。
1、开学初组织成立数学奥数社团。制定兴趣小组活动计划,落实详尽的兴趣小组活动方案,体现小组的特色。
2、奥数社团活动定课程,为开展广泛的数学活动提供切实素材。把学生的数学活动落到实处,为学生安排一定的时间,每周的活动时间,教师专门指导。力求做到周周有内容,有目标。
3、开展读报和阅读数学书籍活动。指导学生广泛阅读,让学生享受读报的快乐。要求有条件的学生自行购买数学书籍,课外阅读的书籍还可以向学校图书馆借阅。教师在学生开展阅读前都搜集了一些书籍中的背景资料介绍给学生。教材中的思考题、你知道吗等内容教师都在数学兴趣活动课上组织学生阅读并指导,并适当介绍拓展些的知识,鼓励学生自行阅读、独立思考等。利用生活中的数学资源,让学生体验数学的实用价值。生活中处处有数学,各种媒体中数学内容也非常丰富。一方面教师要广泛收集适合于学生的数学资料、信息,一方面要求学生针对学习内容收集生活中的各种数学问题,旅游中购买门票的数学问题等等,然后组织学生在课堂中讨论研究收集到的数学问题和信息,这样既拓展了教材内容,又让学生充分体验了数学的应用价值,同时又增强了学生学好数学的信心!
4、开展丰富多彩的活动,为“数学兴趣活动”提供动力支撑。在正常进行数学兴趣活动的同时,开展一定的主题活动把数学课外活动推向高潮。
四、活动安排
有理数及其运算一元一次方程与一元一次方程组
应用题三角形
一元一次不等式和一元一次不等式组整式的运算
平行线和相交线生活中的数据
奥数班主要学的篇二
经过主席台光华路小学三年级学生有125人参加运动会入场式,他们每5人一行,前后每行间隔为2米,主席台长42米,他们以每分钟45米的速度通过主席台,需要多少分钟?分析:从表面上来看这道题与前面的例是完全不同但从实质上看,它是植树问题的逆解题目.根据题目中三年级参加运动会的总人数与每行的人数.可求出三年级共列队多少行?每行相当于已知的树木棵数,每行前后间隔2米,相当于每两棵树间的`距离,这样可以求出入场式队伍的全长;再用队伍的长度加上主席台的长度,就是每个人通过主席台所走的路程,再用所行的路程除以行进的速度,就可以求出通过主席台所需的时间。解答:(1)三年级入场式列队的行数是:125÷5=25(行);(2)三年级入场式队伍的全长是:2×(25-1)=48(米);(3)三年级入场式队伍的全长加上主席台的长度,即每个人通过主席台所走的路程是:48+42=90(米);(4)通过主席台所走的路程是:90÷45=2(分钟)综合算式:[2×(125÷5-1)+42]÷45=2(分钟)
答:通过主席台需要2分钟。
奥数班主要学的篇三
在1、2、3、4、5、6、7之间放几个“+”号,使它们的和等于100,试试看。
1234567=100
解:对这类题目一是要大胆尝试,边想边写,千万不要只想不写!二是可以先考虑与目标值(此题是100)较接近的大数,再考虑用较小的`数进行调整、修正,使式子的得数逐渐接近目标值,也就是使之转化为较简单的情况。
(1)对此题可考虑先在67前面放一个“+”号,这样比100还小33,也就是说,转化成了较简单的情况:
12345=33
再考虑在23前放个“+”号,它比33还小10,这样问题又转化为:
145=10
这就很容易看出来了:1+4+5=10
所以最后可以确定组成的算式是:
1+23+4+5+67=100
(2)此题还可以有另外的解法,边看边想可得出:34+56=90
剩下的三个数:
1+2+7=10
所以最后可以组成如下的算式:
1+2+34+56+7=100。
奥数班主要学的篇四
解:由乘法原理,报名的结果共有4×4×4=64种不同的情形.
2.乘法原理
由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?
解答:
解:由1、2、3、4、5、6共可组成
3×4×5×3=180
个没有重复数字的四位奇数.
奥数班主要学的篇五
【解答】6×4=24种
6×2=12种
4×2=8种
24+12+8=44种
【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。当从国画、油画各选一幅有多少种选法时,利用的乘法原理。由此可知这是一道利用两个原理的综合题。关键是正确把握原理。
符合要求的选法可分三类:
设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。由乘法原理有6×4=24种选法。
第二类为:国画、水彩画各一幅,由乘法原理有6×2=12种选法。
第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。
这三类是各自独立发生互不相干进行的。
因此,依加法原理,选取两幅不同类型的画布置教室的选法有24+12+8=44种。
2.从1到100的所有自然数中,不含有数字4的自然数有多少个?
【解答】从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.
一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;
三位数只有100.
所以一共有8+8×9+1=81个不含4的自然数.